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LETTER TO THE EDITOR 

Statistics of the transmission coefficient and its 
dependence on a constant electric field in disordered 
one-dimensional conductors 

J Heinrichs 
Institut de Physique, UniversitC de Likge, Sart Tilman, B5, B-4000 Liege 1,  Belgium 

Received 20 January 1989 

Abstract. Abrikosov’s microscopic results for the transmission coefficient in disordered one- 
dimensional conductors are supplemented by an analysis of its distribution in the quasi- 
metallic regime and a discussion of the effect of a constant electric field. Our treatment is 
based on the method of invariant imbedding, which is shown to be equivalent to Abrikosov’s 
method at zero field, for uniformly distributed phases. 

The study of the statistical properties of the transmission coefficient t of disordered one- 
dimensional systems [l, 21 is of interest because, like other transport parameters, t 
reflects electron localisation effects. It is also of interest because of the uncertainty 
surrounding the definition of the conductance of a finite one-dimensional disordered 
conductor. Indeed, some authors [l, 3, 41 have recently identified the dimensionless 
conductance g with the transmission coefficient rather than with the familiar Landauer 
expression [ 11 

g = p-1 = t / ( l  - t )  (1) 

where p is the dimensionless resistance. While the two definitions of g differ significantly 
only in the large-conductance regime (t-. l), they generally lead to quite different 
statistical properties, since, for example, the mean conductance derived from (1) (and, 
a fortiori, all higher-order conductance moments) diverges for all sample lengths L ,  as 
first noted by Landauer [ 5 ] .  This may be traced to the fact that the distribution of the 
dimensionless resistance defined by (1) is very broad and, for finite L ,  i t  has non- 
zero amplitudes at p = 0, corresponding to near transparency. This property of the 
distribution of p is also strikingly illustrated in a recent numerical study [ 6 ] ,  for arbitrary 
L (see figure 4 of [ 6 ] ) .  The divergence of the conductance moments led Anderson 
and co-workers [7] to suggest that the conductance that is observed in an experiment 
corresponds to an appropriate (finite) typical conductance:, rather than to the mean 
conductance. 

Following the appearance of [l], [3], and [4] some detailed derivations of the Lan- 
dauer formula from the linear response formalism (Kubo formula) have been presented 
[8,9], together with strong criticisms of the formulag = t [9, 101. However, the contro- 
+ After identifying In p as a self-averaging variable (with (In p )  - L )  for L + =, they define a typical con- 
ductance g, = exp( -(In p)). 
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versy concerning the definition of g may not be resolved inasmuch as this definition 
depends on what the disordered chain is connected to [3,8,9]. Thus, Some authors [ 11, 
121 continue to assume that g is proportional to t. While this has the drawback that the 
conductance of a perfect conductor is restricted to values of order unity, rather than 
being infinite, it has the advantage of leading to a mean conductance [ l ]  having the 
exponentially decaying form of the typical conductance [7] for L + =. We believe that 
further detailed studies of the statistical properties of i and their comparison with 
experimental results on conductance might help to resolve the above controversy from 
a practical point of view. 

Detailed microscopic studies of the statistics of the transmission coefficient in one- 
dimensional systems described by a Gaussian &correlated random potential [1, 2J 
have been restricted to the low-transmission regime corresponding to L 9 L, (L, = 
localisation length). The same is true for their recent generalisation to arbitrary disorder 
[12]. The purpose of the present Letter is to supplement the results of Abrikosov and 
Mel'nikov [1, 21 by analysing the distribution of t in the high-transmission (or quasi- 
metallic) regime corresponding to L 4 L,, and to study the effect of a constant electric 
field on both high- and low-transmission statistics. As is well known [13], a strong 
electric field has the effect of spreading out the wavefunctions in one dimension from an 
exponentially localised form to a weaker power-law localised form, thus leading to 
important qualitative changes of the various moments of t. Our analysis is based on the 
method of invariant imbedding, which has been extensively used of late in the context 
of resistance fluctuations [14, 151. 

In the framework of the imbedding procedure it may be shown [ 161 that the amplitude 
on an electronic wave reflected by a random conductor of length L ,  in the presence of a 
constant electric field % = - F of strength F, is given by 

( 2 )  2ikl dR/dL  = - k 2 ( 1  + R)2 + k:(l - R)2 + i( l  - R 2 )  d k l / d L  

where 

k l  = ( k ;  + 2/eIFL)'/' ( 3 )  

is the wavenumber of an incident electron in the region x > L to the right of the 
conductor, ko  is the wavenumber of a transmitted electron of energy E = 4k; (in units 
with h = m = 1) in the region x < 0 and, finally, 

k2 = k i  - 2(V(L) - /eiFL) (4) 

where V(L) is the random potential at the right-hand edge of the sample, which we 
assume to be Gaussian and &correlated: 

(V(L)V(L')) = Vid(L - L' )  (V(L)) = 0. ( 5 )  
Equation (2) generalises the form of the imbedding equation for R(L)  [17] in the case 
where the incident wavenumber differs from the transmitted wavenumber by an L- 
dependent term, rather than by a constant. 

We write the complex reflection amplitude in the form R = (1 - t)'I2 exp ie and 
transform equation (2) into separate equations for the transmission coefficient, t = 
1 - 1Ri2, and the phase 8: 

dt/dL = [(2V(L)/k,) sin 8 - (le/F/k:) cos e ]  t(1 - t)1/2 ( 6 )  

dO/dL = -[(V(L)/k,) cos 8 + (lelF/2k:) sin e ] (2  - t ) / ( l  - t)1/2 
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- (2/k,)(V(L) -GI. (7) 

Next we derive recursion relations for the moments of t ,  t ,  = (P), n = 1, 2, . . ., by 
transforming (6) into an equation for the nth power of t  and averaging over the random 
potential (5). Averages of quantities of the form V(L)f(t, e ) ,  wherefdepends implicitly 
on V(L) through t and 8, are performed by using Novikov’s formula [18] 

where the variational derivatives o f t  and 6 are readily obtained from the first integrals 
of equations (6)  and (7). Finally, we assume, as usual, that the phase 8 is an independent 
randomvariable, uniformly distributed [7] between0 and2n, which allows us to decouple 
averages: (g(O)h(t)) = (g(O))(h(t)), and to evaluate ( g ( 0 ) )  explicitly. In this way we 
obtain the desired recursion relations 

dt,/dl = n(n - l)t,l - n’t,+l n = 0 , 1 , 2 ,  . . .  (9) 

where we have defined the dimensionless reduced length 

whose expression for low fields, 21elFLko’ 1, is 

I = (L/L,) (1 - lelFL/k2, + . . .) 
where L, = ki/Vi is the zero-field localisation length. The system (9) is not convenient 
for solution (which requires the explicit form of t l ! )  and, as in previous work [ l ,  21, we 
shall derive the moments of t from the probability distribution of t-’ defined in terms of 
moments U, = (t-“). The stochastic equation for the inverse transmission coefficient 
U = f-’ is readily obtained from (6), and by following the procedure outlined above, we 
get 

du , /d l=  n(n + l ) ~ ,  - n2u,-1 n = 0 , 1 , 2  , . . .  . (11) 

Actually, it is also quite easy to derive a differential equation for the full distribution, 
PU(u, I ) ,  from the stochastic equation for U. Rewriting the latter for an arbitrary function 
f (u>  

df/dL = -[(2V(L)/K1) sin 8 - (lelF/k:) cos 8][u(u - 1)]’12 df/du (12) 

and averaging as discussed above, assuming uniformly distributed phases, we obtain 

d ( f ) /d l=  ( [ ( 2 ~  - 1) df/du + U(U - 1) d’f /d~*])  (13) 

where 1 is given by (10). Finally, using the definition of averages in terms of the distri- 
bution PU(u, I )  of U,  we obtain a Fokker-Planck-type equation for PU(u, 1) by partial 
integration of the terms on the right hand side of (13): 

aP,/ai = a[u(u - 1) a ~ , / a ~ ] / a ~  (14) 
which differs from equation (8) in [ l ]  by the definition of 1, which now includes the effect 
of the electric field. It is comforting to know that the method of invariant imbedding 
leads to the same equation as Abrikosov’s quite different method for F = 0. The anal- 
ogous equations for the distribution of the transmission coefficient and of the resistance 
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defined by (1) may be readily obtained by the same procedure, starting from (6)t. We 
also emphasise that equations (9), (11) and (14) are exact under the assumption of 
uniformly distributed phases and, in particular, they are valid for arbitrary fields. 
Equation (1) may also be obtained from (14) by multiplying both sides by U" and, after 
integrating over U ,  transforming the terms on the right hand side by partial integrations. 

We restrict detailed discussion of the results for the transmission coefficient obtained 
from the above treatment to two important aspects which have previously not been 
analysed: the form of the field-dependent distribution of t  in the quasi-metallic (or high- 
transmission) regime, and the effect of an electric field on the moments, particularly in 
the low-transmission regime where its delocalising effect on the electron wavefunctions 
is most visible. 

The quasi-metallic regime, 1 G 1, owes its name to the relation (p) - 1- 0 ,  which 
implies diffusive motion of electrons at zero field [ 5 ] .  By expanding the exact solutions 
of the system (ll), u1 = $ (ez1 + l ) ,  u2 = Q e6/ + $ e*[ + 4, u3 = h el2' + a e6' + $?ij e2[ + t ,  
etc; for 1 + 0 we get U, = 1 + nl + n212 + . . . , n = 1, 2, . . . , which suggests that the 
asymptotic solution of (11) for nl G 1 is 

lim U ,  = (I - nl)-l n = 0 , 1 , 2  , . . .  . (15) 
I-+ 0 

Substitution of this expression into (11) shows that it has the same degree of accuracy as 
its Taylor expansion up to cubic order. By using the identity 

(1 - nl)-' = lox d s  exp[-s(l - nl)] 

to perform the summation over the moments in the characteristic function, we finally 
obtain the distribution 

P U ( U ,  1) = 1-1U(-'/I-1) 1- 0. (16) 

P l ( t ,  1) = d u  P U ( u ,  l)s(t - U - ' )  = l-'t"''-') I -  0 (17) 

The distribution of the transmission coefficient is then 

jlX 
whose moments are t, = (1 + d- ' ,  n = 0, 1, 2,  , . . . The power-law form of the 
distributions (16) and (17) contrasts with the form of the distribution of resistance in the 
high-transmission regime. The latter is found by expanding the Landauer formula (1) 
fort- 1, 

p = t-' - 1 = -In t + O ( h 2  t ) .  

P,(p, I )  1 I- '  exp( -p/l). 

(18) 

(19) 

From (17) and (18) one then obtains 

An expression of the same form for the distribution of resistance in the presence of an 
electric field has been obtained recently [6], using an involved but powerful transfer- 
matrix method. However, this approach is phenomenological in that it introduces a 
dimensionless length lproportional to L ,  whose explicit form can only be obtained from 
an intuitive argument [13], or by comparison with the results of a microscopic treatment 
i The equation for the distribution of resistance p derived earlier [14], using Van Kampen's lemma, includes 
an additional field-dependent term on the right hand side. This term arises from their use of an imbedding 
equation which is invalid when the incident wavenumber k ,  depends explicitly on L [17]. 
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such as the one given here. Finally, we note that the relative variance also has a 
characteristic form, of (l/t,) (t2 - t:) 1/2 = 1 + O(1'); it varies linearly with L at low fields 
and logarithmically at strong fields. 

Next we consider the low-transmission regime that obtains for 1 9 1. This regime has 
been thoroughly studied at zero field in [l] and in [2] and, more recently, in [ l l ]  and 
[12]. Since the electric field enters only through the definition of 1 we may use the results 
of Abrikosov and we have 

U, = [n!/2"(2n - I)!] exp[n(n + 1)1] (20) 

t ,  = 2n3/*(r2(~ - i ) / r2 (n ) )  1r3/* exp(-il) n = l , 2 ,  . . .  19 1. (21) 

We note that, while the analysis leading to (21) is relatively involved, the form of the 
leading exponential decrease (but not the correct pre-exponential coefficient) may 
readily be found by evaluating t, using the asymptotic log-normal distribution for U = 
t-' (equation (19) of [l]) obtained from (14). At  low fields U, and t, vary exponentially 
in the first approximation, while at strong fields one obtains power-law variations: U, 

increases as 

U, - L a m  a , ( F )  = n(n + l)vi/2lelF (22) 

t ,  - ln-3/2 (2ko2 IeIFL) (2ki2 le1 FL) - v $ s ~ e ~ F  (23) 

and t, decreases as 

1 9 1  

which implies asymptotic power-law localisation. In particular, as in the zero-field case 
[l], the relative variances of U and t obtained from (22) and (23) are qualitatively the 
same and indicate that both quantities remain non-self-averaging when Fis  increased to 
large values. 

The slowing down of the variations of U,, and t, with increasing L ,  for L+ x ,  is 
related to the spreading of wavefunctions of the localised states under the influence of 
an electric field. We note that another way of increasing the conductance of a disordered 
electronic system is to use finite frequencies. This is particularly obvious in an infinite 
one-dimensional sample where the DC conductivity is zero (due to the localised nature 
of the eigenstates), while the AC conductivity is not. A recent study [19] of the L- 
dependence of the frequency-dependent conductance [4], g(w,  L ) ,  of a disordered 
one-dimensional conductor indeed shows a slowing-down of the decay of the mean 
conductance from an e-L form at w = 0 to a form proportional to L-2 at w # 0. On the 
other hand, the mean of lng(w, L )  is slowed down from a linear form at o = 0 to a 
logarithmic form at w # 0. The latter behaviour is similar to the asymptotic variation of 
(In t) in a constant electric field. Indeed, from the Gaussian distribution of In t = -In U 

in the interval - x s In t s 0 for L + CC [ 11, one has 

(in t )  = - I  + o [ I ~ / ~  exp(-~/4)] (24a) 
which decreases as - L  at low fields and as -In L at strong fields (equation (10)). 
We note that (24a) coincides to leading order with an equation derived intuitively by 
Soukoulis and co-workers [13]. Similarly, the relative variance, given by 

(Var In t)/(ln t )2  - -2/1 (24b) 
crosses over from an ,!-'-behaviour at low fields to an ln-' L-behaviour at strong fields, 
which may be compared with the corresponding form for the frequency-dependent 
conductance [ 191 : 
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(Var In g(w,  L))/(lng(w, L))2 - L L-+= w # 0. 

Finally, from the form of the absolute variance, Var In t = 21, it follows that fluctuations 
are diminished in a weak electric field [ 141. 
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